No Such Blog or Diary
ICPC by Haskell
なぜか D を飛ばしてICPC2005 Regional, Tokyo の問題Eを Haskell で.全生成して条件で filter して max とるという非常に美しい形に...
-- Problem E in ACM/ICPC 2005 ASIA Regional Tokyo -- 2005/11/04 Brute Force (42 * 2^5) import Control.Monad import Debug.Trace import List main = getProblems >>= mapM_ (putStrLn.(\r -> if r < 0 then "-1" else show r).solve) getProblems = do n <- liftM (head.map read.words) getLine replicateM n getProblem getProblem = do r <- getNum s <- liftM (head.map read.words) getLine ws <- replicateM s getNum return (r, ws) where getNum = liftM (head.map read.words) getLine :: IO(Double) solve :: (Double, [Double])->Double solve (r, ws) = foldl max (-1.0).filter (<r).map(\(lw, rw)->lw+rw).concat.map genWidth.concat.map genTree.perm $ ws data BTree a = Node a (BTree a) (BTree a) | Leaf a genTree ] = [Leaf genTree xs = [ Node (weight t + weight u) t u | i <- [1..length xs-1], t<-genTree (take i xs), u<-genTree (drop i xs)] weight (Leaf x) = x weight (Node x _ _) = x genWidth (Leaf x) = [(0.0,0.0)] genWidth (Node _ l r) = let ls = genWidth l rs = genWidth r lw = weight l rw = weight r la = lw/(lw + rw) ra = 1-la in [x | (ll,lr)<-ls, (rl,rr)<-rs, x<-gen ll lr rl rr la ra] gen ll lr rl rr la ra = dupFlip (max (la + ll) (rl-ra), max (ra + rr) (lr-la)) dupFlip (x,y) = [(x,y), (y,x)] perm [] = [] perm ] = [[] perm (x:xs) = [ take i y ++ (x:drop i y) | y <- perm xs, i <- [1..length xs]]
- Comments: 0
- TrackBack (Close): -
ICPC by Haskell
引き続きICPC2005 Regional, Tokyo の問題Cを Haskell で.サイコロの全パタン生成が一番面倒かも.全盛生後の比較の高速化のために色名を数字に置き換える部分は少々手抜きかも.
-- Problem C in ACM/ICPC 2005 ASIA Regional Tokyo -- 2005/11/04 Brute Force (24^3) import Control.Monad import Debug.Trace import List main = getProblems >>= mapM_ (putStrLn.show.solve) getProblems = do [n] <- getNums if n==0 then return [] else do xs <- replicateM n getEntry liftM (xs:) getProblems where getEntry = liftM words getLine getNums = liftM (map read.words) getLine solve::[[String]]->Int solve [d] = 0 solve ds = let tab = zip (nub.sort.concat $ ds) [1..] rep x = case (lookup x tab) of Just i -> i ds' = map (map rep) ds in foldl1 min.map cost.map (head ds':).prod.map genAll.tail $ ds' cost = sum . map cost'. trans cost' xs = length xs - longest (sort xs) longest (h:ts) = foldl1 max.map snd $ scanl (\(x, c) y -> if y == x then (x, c+1) else (y, 1)) (h,1) ts trans s] = map (\x -> [) xs trans (xs:xss) = zipWith (:) xs $ trans xss prod s] = map (\x->[) xs prod (xs:xss) = concat.map (\x -> map (x:) (prod xss)) $ xs -- generate all dice equivalent to the die by rotation genAll = concat . map rots2 . rots1 -- rotations around an axis (the front surface is fixed) rots2 [x1,x2,x3,x4,x5,x6] = [[x1,x2,x3,x4,x5,x6], [x1,x3,x5,x2,x4,x6], [x1,x5,x4,x3,x2,x6], [x1,x4,x2,x5,x3,x6]] -- rotations to move each surface to the front rots1 [x1,x2,x3,x4,x5,x6] = [[x1,x2,x3,x4,x5,x6], [x2,x6,x3,x4,x1,x5], [x3,x2,x6,x1,x5,x4], [x4,x2,x1,x6,x5,x3], [x5,x1,x3,x4,x6,x2], [x6,x5,x3,x4,x2,x1]]
- Comments: 0
- TrackBack (Close): -
forall A
Haskell で forall A. A -> A 系の型を作ってみる.まずもっとも単純に.
let x = x
t を型変数として x :: t で,undef 以外の何者でもない気がする.
んで,次.
let f x = x
これで f :: t->t . id 関数なような.
続いて
let y f = f (y f)
これで y :: (t->t)->t . fixpoint 関数とうか Y コンビネータなような.
ついでに,
let g y z = if True then y else z
とすると g :: t->t->t になる.意味のある関数ではないが... さて,これ以降はどうなるのだろうか?
ついでなので,forall a,b,... . a -> b -> ... も作ろうとすると
let f x y = f x y
とかで引数の数を増やせばいくらでもいける.意味はないけど.意味のあるものってどれくらいあるんだろう? undef, id, fixpoint 以外に意味のあるのがあるか?
- Comments: 0
- TrackBack (Close): -
ふと思ったこと@DT上P244
- 2005-11-12 (Sat)
- 一般
live を逆さまにすると evil だなぁ.逆さまになる英単語って意識したことなかったので新鮮な感じだ.
- Comments: 0
- TrackBack (Close): -
ICPC by Haskell
ICPC2005 Regional, Tokyo の問題Bを Haskell で.queue を使ったシミュレーションだけど面倒だから一ターンごとにリスト生成...
-- Problem B in ACM/ICPC 2005 ASIA Regional Tokyo -- 2005/11/04 Brute Force import Control.Monad import Debug.Trace main = getProblems >>= mapM_ (putStrLn.show.solve) getProblems = do [m, c, n] <- getNums if (n==0 && m==0 && c==0) then return [] else do xs <- replicateM n getEntry liftM ((m,c,n,xs):) getProblems where getEntry = getNums >> getNums getNums = liftM (map read.words) getLine -- it's better to make each entry of ds the pair of it and its length solve (m,c,n,xs) = sl xs 0 (take m $ repeat []) where sl [] t _ = t sl ys t ds = let (hs, ys') = unzip $ map (\x->(head x, tail x)) ys (t', ds') = sl' ds hs in sl (filter (not.(==[])) ys') (t'+t) ds' sl' ds = foldl searchOne (0,ds) searchOne (t, ds) x = let p = length $ takeWhile (not.or.map (==x)) ds ds' =if p<m then take p ds++[filter (not.(==x)) (ds!!p)]++drop (p+1) ds else ds in insertOne (t+p+1) ds' x insertOne t ds x = if length (head ds) < c then (t+1, (x:head ds):tail ds) else let p = length $ takeWhile ((==c).length) ds ds' = if p<m then take p ds++[x:(ds!!p)]++drop (p+1) ds else ds p' = length $ takeWhile ((==c).length) ds' hds = head ds tds = tail ds q = p'-1 tds' =if p'<m then take q tds++[last hds:(tds!!q)]++drop (q+1) tds else tds in (t+p+p'+p+5, (x:init hds):tds')
- Comments: 0
- TrackBack (Close): -